改变颜色空间

作者|OpenCV-Python Tutorials
编译|Vincent
来源|OpenCV-Python Tutorials

目标

  • 在本教程中,你将学习如何将图像从一个色彩空间转换到另一个,像BGR↔灰色,BGR↔HSV等
  • 除此之外,我们还将创建一个应用程序,以提取视频中的彩色对象
  • 你将学习以下功能:cv.cvtColorcv.inRange等。

改变颜色空间

OpenCV中有超过150种颜色空间转换方法。但是我们将研究只有两个最广泛使用的,BGR↔灰色和BGR↔HSV。

对于颜色转换,我们使用cv函数。cvtColor(input_image, flag),其中flag决定转换的类型。

对于BGR→灰度转换,我们使用标志cv.COLOR_BGR2GRAY。类似地,对于BGR→HSV,我们使用标志cv.COLOR_BGR2HSV。要获取其他标记,只需在Python终端中运行以下命令:

>>> import cv2 as cv
>>> flags = [i for i in dir(cv) if i.startswith('COLOR_')]
>>> print( flags )

注意 HSV的色相范围为[0,179],饱和度范围为[0,255],值范围为[0,255]。不同的软件使用不同的规模。因此,如果你要将OpenCV值和它们比较,你需要将这些范围标准化。

对象追踪

现在我们知道了如何将BGR图像转换成HSV,我们可以使用它来提取一个有颜色的对象。在HSV中比在BGR颜色空间中更容易表示颜色。在我们的应用程序中,我们将尝试提取一个蓝色的对象。方法如下: - 取视频的每一帧 - 转换从BGR到HSV颜色空间 - 我们对HSV图像设置蓝色范围的阈值 - 现在单独提取蓝色对象,我们可以对图像做任何我们想做的事情。

下面是详细注释的代码:

import cv2 as cv
import numpy as np
cap = cv.VideoCapture(0)
while(1):
    # 读取帧
    _, frame = cap.read()
    # 转换颜色空间 BGR 到 HSV
    hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
    # 定义HSV中蓝色的范围
    lower_blue = np.array([110,50,50])
    upper_blue = np.array([130,255,255])
    # 设置HSV的阈值使得只取蓝色
    mask = cv.inRange(hsv, lower_blue, upper_blue)
    # 将掩膜和图像逐像素相加
    res = cv.bitwise_and(frame,frame, mask= mask)
    cv.imshow('frame',frame)
    cv.imshow('mask',mask)
    cv.imshow('res',res)
    k = cv.waitKey(5) & 0xFF
    if k == 27:
        break
cv.destroyAllWindows()

下图显示了对蓝色对象的跟踪:

注意 图像中有一些噪点。我们将在后面的章节中看到如何删除它们。 这是对象跟踪中最简单的方法。一旦学习了轮廓的功能,你就可以做很多事情,例如找到该对象的质心并使用它来跟踪对象,仅通过将手移到相机前面以及其他许多有趣的东西就可以绘制图表。

如何找到要追踪的HSV值?

这是在stackoverflow.com上发现的一个常见问题。它非常简单,你可以使用相同的函数cv.cvtColor()。你只需传递你想要的BGR值,而不是传递图像。例如,要查找绿色的HSV值,请在Python终端中尝试以下命令:

>>> green = np.uint8([[[0,255,0 ]]])
>>> hsv_green = cv.cvtColor(green,cv.COLOR_BGR2HSV)
>>> print( hsv_green )
[[[ 60 255 255]]]

现在把[H- 10,100,100][H+ 10,255, 255]分别作为下界和上界。除了这个方法之外,你可以使用任何图像编辑工具(如GIMP或任何在线转换器)来查找这些值,但是不要忘记调整HSV范围。

其他资源

练习题

  1. 尝试找到一种方法来提取多个彩色对象,例如,同时提取红色,蓝色,绿色对象。